# SWIR331 Short-Wavelength Infrared Camera Help Manual

Version 1.0 2023.09.01



All materials related to this publication are subject to change without notice and are copyrighted by ToupTek Photonics.

Please download the latest version from touptek.com.

# content

| S٧ | <b>VIR33</b> 1                                             | 31 Short-Wavelength Infrared Camera Help Manual                                                                                                                               | 1                          |
|----|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1  | The                                                        | e basic characteristics of the SWIR331 series camera                                                                                                                          | 1                          |
| 2  | Cam                                                        | mera parameters and performance                                                                                                                                               | 2                          |
|    | 2.1<br>2.2<br>2.3<br>2.4                                   | Brief list of SWIR331 camera simple parameter<br>SWIR331 Camera Specification<br>Sensor Quantum Efficiency<br>Frame rate and ROI frame rate                                   |                            |
| 3  | The                                                        | e main features of the SWIR331 series camera                                                                                                                                  | 4                          |
| 4  | Dim                                                        | nension and layout of the the SWIR331 series camera                                                                                                                           | 5                          |
|    | 4.1<br>4.2<br>4.3<br>4.4                                   | The back view and dimension of the SWIR331 series camera<br>Dimension of the e SWIR331 series camera<br>The back view of the SWIR331 series camera<br>The packing information | 5<br>5<br>6                |
| 5  | Exte                                                       | ernal IO connector and electrical characteristics                                                                                                                             | 8                          |
|    | 5.1<br>5.2<br><i>5.2.2</i><br><i>5.2.2</i>                 | Pin signal         I/O electrical characteristics         .1       Opto-isolated input circuit (line0)         .2       Opto-isolated output circuit (line1)                  |                            |
| 6  | Con                                                        | nnection and Configuration the CameraLink                                                                                                                                     | 11                         |
|    | 6.1<br>6.2<br><i>6.2.2</i><br><i>6.2.2</i><br><i>6.2.3</i> | Connection to the CameraLink         Software installation                                                                                                                    | 11<br>11<br>11<br>11<br>12 |
|    | 6.3<br>6.3.1<br>6.3.2                                      | Configure the Delsa capture card         .1       Serial port configuration         .2       CameraLink mode configured         .3       Configuring Cameral ink Receiving    |                            |
|    | 6.3.4<br>6.4<br>6.4.2                                      | 2.4 CameraLink Receiving the configuration content 2.4 Using GenIcam 2.1 Communication Settings 2.2 Description of Content                                                    |                            |
|    | 6.5<br>6.5.2<br>6.5.3<br>6.5.4                             | Description of Genicam         .1       Device Information and control         .2       Image Format Controls         .3       TEC Ctrl         .4       Trigger ctrl         |                            |
| 7  | Cam                                                        | nera Commands                                                                                                                                                                 | 21                         |
| 8  | 7.1<br>7.2<br>7.3<br>SDK                                   | Basic Formats<br>Dedicated Part Format<br>Definition of each register                                                                                                         |                            |

| 8.1 SDK    |              |
|------------|--------------|
| 8.2 CLViev | Napplication |
| 8.3 CLCtrl | software     |

## 1 The basic characteristics of the SWIR331 series camera

SWIR331 Short-Wavelength Infrared Camera is a C-mount short-wave infrared cooling camera using a nationally produced 640 x 512 InGaAs image sensor, which have CameraLink / USB3 (under development) / 10GigE (under development) and other data transmission methods. It has the advantages of 900 - 1700nm short-wave infrared wide spectral response, 330,000 resolution, high quantum efficiency and low noise.

SWIR331 Short-Wavelength Infrared Camera can be widely used in short-wave infrared imaging, spectral imaging, monitoring (night vision), semiconductor detection, medicine and biology, optical fiber communication, astronomy, high temperature imaging, humidity distribution imaging and other applications.





Figure 1 Front and back views of SWIR331 series cameras

The basic characteristics of SWIR331 Short-Wavelength Infrared Camera are listed below:

- 724FPS high frame rate
- InGaAs SWIR Detector
- 640 x 512
- 15um pixel size
- 900nm-1700nm
- Global shutter
- Built-in TEC refrigeration chip, the temperature difference can reach 45 degrees Celsius below the ambient temperature
- PID precise temperature control, the fluctuation is less than 0.3 degrees
- CameraLink Full / USB3 (under development) / 10GigE (under development)
- 12-bit output (14-bit ADC)
- Multiple working modes: video mode/soft trigger mode/external trigger mode
- There are 100% domestically produced device versions or high-performance versions
- Support field update firmware
- Accept OEM custom development

# 2 Camera parameters and performance

# 2.1 Brief list of SWIR331 camera simple parameter

| Order Code       | Sensor type and size                                       | Pixel<br>size(um) | Data Interface                  | Camera Type                     | FPS/Resolution | Exposure Time |
|------------------|------------------------------------------------------------|-------------------|---------------------------------|---------------------------------|----------------|---------------|
| SWIR331KMA-CL500 |                                                            |                   |                                 | China produced devices          | 517@640x512    | 31.25us~1s    |
| SWIR331KMA-CL700 | 0.33M / 640x512<br>- 3/4" (9.60x7.68) 15x15<br>Buit-in TEC | 15,15             | Comorolink                      | China produced devices          | 724@640x512    | 23.81us ~1s   |
| SWIR331KMB-CL500 |                                                            | CameraLink        | Global procurement of key chips | 517@640x512                     | 31.25us~1s     |               |
| SWIR331KMB-CL700 |                                                            |                   |                                 | Global procurement of key chips | 724@640x512    | 23.81us ~1s   |

# 2.2 SWIR331 Camera Specification

| Table 1 SWIR331 | camera | specification |
|-----------------|--------|---------------|
|-----------------|--------|---------------|

| Model                                                 | SWIR331KMA -CL500                                                                                           | SWIR331KMA-CL700                | SWIR331KM B-CL500     | SWIR331KM B-CL700 |  |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|-------------------|--|
| Parameter                                             |                                                                                                             | 330,000 pixels 3/4" InGaAs Ca   | meraLink Camera       |                   |  |
|                                                       |                                                                                                             | Camera                          |                       |                   |  |
| Sensor model                                          | National production                                                                                         |                                 |                       |                   |  |
| Sensor type                                           | InGaAs CMOS image sensor                                                                                    |                                 |                       |                   |  |
| Spectral range                                        | 900nm - 1700nm                                                                                              |                                 |                       |                   |  |
| pixel size                                            | 15 μm x 15 μm                                                                                               |                                 |                       |                   |  |
| Target size                                           | 3/4"                                                                                                        |                                 |                       |                   |  |
| ADC                                                   | 12-bit output /14-bit output (14                                                                            | 4-bit ADC)                      |                       |                   |  |
| Frame Rate & Resolution                               | 517 fps @ 640 x 512                                                                                         | 724 fps@640 x 512               | 517 fps @ 640 x 512   | 724 fps@640 x 512 |  |
| Memory                                                | 512MB                                                                                                       |                                 |                       |                   |  |
| QE                                                    | 75%@ 1350nm                                                                                                 |                                 |                       |                   |  |
| Conversion gain                                       | 970.01e-/DN(LG), 18.02e-/DN(I                                                                               | MG), 3.31e-/DN (HG)             |                       |                   |  |
| Dynamic Range                                         | 69.2dB(LG), 63.2dB(MG), 57.4d                                                                               | B(HG) *1                        |                       |                   |  |
| Read noise1.3DN(LG), 2.7DN(MG), 5.0DN(HG)             |                                                                                                             |                                 |                       |                   |  |
| Full well charge     3.5Me(LG), 70Ke(MG), 12Ke(HG) *1 |                                                                                                             |                                 |                       |                   |  |
| Maximum SNR                                           | 65.4dB(LG), 48.5dB(MG), 40.7d                                                                               | B(HG)                           |                       |                   |  |
| Dark current                                          | 30fa@0.1V&18℃                                                                                               |                                 |                       |                   |  |
| Exposure time range                                   | 31.25us~1s                                                                                                  | 23.81us~1s                      | 31.25us~1s            | 23.81us~1s        |  |
| Shutter mode                                          | Global shutter                                                                                              |                                 |                       |                   |  |
| Data interface                                        | CameraLink Full                                                                                             |                                 |                       |                   |  |
| Digital I/O                                           | 1 optocoupler isolated input, 1                                                                             | optocoupler isolated output     |                       |                   |  |
| Data Format                                           | Mono 12 / Mono 14                                                                                           |                                 |                       |                   |  |
| Cooling temperature difference                        | Below room temperature 40 de                                                                                | egrees Celsius                  |                       |                   |  |
| Camera type                                           | Nationally produced devices                                                                                 | Nationally produced devices     | High performance      | High performance  |  |
|                                                       |                                                                                                             | General parameters              |                       |                   |  |
| Power supply                                          | DC12V power supply                                                                                          |                                 |                       |                   |  |
| Power consumption                                     | 8.4W (TEC OFF ) / <16W (TEC O                                                                               | N )                             |                       |                   |  |
| Temperature                                           | TemperatureWorking temperature - 30 $\sim$ 60 $^{\circ}$ C, storage temperature - 40 $\sim$ 85 $^{\circ}$ C |                                 |                       |                   |  |
| Humidity                                              | 20%-80% , non-condensing                                                                                    |                                 |                       |                   |  |
| Size                                                  | 68mm×68mm×90.3mm                                                                                            |                                 |                       |                   |  |
| Weight                                                | 485g                                                                                                        |                                 |                       |                   |  |
| Lens mount                                            | C-mount interface                                                                                           |                                 |                       |                   |  |
| Software                                              | Provide SDK development kit a                                                                               | nd CL View software based on De | elsa acquisition card |                   |  |

\*1: LG: CDS-OFF, DeNoise-ON; MG: CDS-ON, DeNoise-OFF; HG: CDS-ON, DeNoise-OFF.

## 2.3 Sensor Quantum Efficiency



Figure 2 The spectral QE of SWIR331 Short-Wavelength Infrared Camera

## 2.4 Frame rate and ROI frame rate

The camera supports hardware ROI, the smaller the ROI size, the faster the frame rate

#### Table 2 CL700 ROI typical frame rate

| X Size | Y Size | FPS  |
|--------|--------|------|
| 640    | 512    | 724  |
| 640    | 256    | 1432 |
| 320    | 256    | 2201 |
| 200    | 200    | 3487 |
| 120    | 120    | 6595 |

#### Table 3 CL500 ROI typical frame rate

| X Size | Y Size | FPS  |
|--------|--------|------|
| 640    | 512    | 517  |
| 640    | 256    | 1023 |
| 320    | 256    | 1572 |
| 200    | 200    | 2491 |
| 120    | 120    | 4774 |

# 3 The main features of the SWIR331 series camera

| Function                     | Function description                                                                                                                                                                                                                                                                                           |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating mode               | Operating mode: video mode or trigger mode                                                                                                                                                                                                                                                                     |
| Operating mode               | Trigger mode: soft trigger mode or external trigger mode                                                                                                                                                                                                                                                       |
| GenICam                      | Supports the standard GenICam protocol and can control the camera through third-party software                                                                                                                                                                                                                 |
| Serial port control          | Support the virtual serial port of the CameraLink capture card to control the camera, and the camera command is open                                                                                                                                                                                           |
| Denoise                      | The camera hardware incorporates denoise                                                                                                                                                                                                                                                                       |
| Bit depth                    | Built-in 14bit ADC, output 12bit or 14bit valid data                                                                                                                                                                                                                                                           |
| Automatic exposure           | Automatic exposure or manual exposure function                                                                                                                                                                                                                                                                 |
| Gain                         | HG, MG, LG 3 gain modes                                                                                                                                                                                                                                                                                        |
| Frame rate                   | Supports precise frame rate control                                                                                                                                                                                                                                                                            |
| ROI                          | Supports single-zone ROI with a maximum frame rate of 8000fps after ROI                                                                                                                                                                                                                                        |
| Flip                         | Supports Vertical/horizontal flip                                                                                                                                                                                                                                                                              |
| Custom dark field correction | The hardware supports up to 12 groups of user-defined dark field correction image functions                                                                                                                                                                                                                    |
| Timestern function           | Timestamps can be turned on or off. After the timestamp function is enabled, the low 8bits of 1-8 pixels, 9-16 pixels, and                                                                                                                                                                                     |
| Timestamp Tunction           | 17-24 pixels will be modified to: 0-7: frame number; 8-15: Frame time; 16-23: trigger signal count                                                                                                                                                                                                             |
| Firmware update              | Supports firmware online update                                                                                                                                                                                                                                                                                |
| Pipette function             | Supports the display of the gray value of the mouse pixel position                                                                                                                                                                                                                                             |
| Histogram display            | Supports histogram display and statistics                                                                                                                                                                                                                                                                      |
| Plane line function          | Supports the function of viewing surface data                                                                                                                                                                                                                                                                  |
| Regional gray statistics     | Support the average gray statistics function of user-defined areas                                                                                                                                                                                                                                             |
|                              | 1 ) When the DC12V power supply is disconnected and only the CameraLink cable is connected, the camera cannot work;<br>2 ) Connect the 6PIN aviation plug interface of the DC12V adapter to the DC12V interface on the camera. After the power<br>is successfully turned on, the two LED lights will light up; |
| DC12V power supply and       | 3) The cooling system of the camera is divided into TEC cooling sheets built in the sensor, using external heat dissipation                                                                                                                                                                                    |
| cooling system               | structure and fan auxiliary heat dissipation, the working temperature can be adjusted to a specific value, the effective                                                                                                                                                                                       |
| cooning system               | cooling temperature can be lower than the ambient temperature of 40°C, and the high-efficiency cooling system ensures extremely low dark current level:                                                                                                                                                        |
|                              | 4) The FEC system adopts PID algorithm control, so that TEC can accurately adjust the sensor to the target temperature.                                                                                                                                                                                        |
|                              | and the temperature deviation is 0.3°C;                                                                                                                                                                                                                                                                        |
|                              | Support mainstream brand CameraLink capture card, through the virtual serial port control, there are two ways:                                                                                                                                                                                                 |
| Acquisition card adaptation  | 1) The standard GenlCam protocol is used to control the acquisition card software;                                                                                                                                                                                                                             |
| -                            | 2) Capture card software is used to capture and display images, and CLCtrl software is used for control.                                                                                                                                                                                                       |

4 Dimension and layout of the the SWIR331 series camera

## 4.1 The back view and dimension of the SWIR331 series camera



Figure 3 The rear cover interface layout of the SWIR331 Short-Wavelength Infrared Camera (CL interface)

## 4.2 Dimension of the e SWIR331 series camera

The Front and side view dimensions of the SWIR331 series camera is shown in Figure 4.



Figure 4 The Front and side view dimensions of the SWIR331 series camera

| Parameter                                | Specification    |
|------------------------------------------|------------------|
| Dimension                                | 68*68*90.3mm     |
| The SWIR331 series camera lens interface | Standard C mount |

## 4.3 The back view of the SWIR331 series camera

The rear interface of the SWIR331 series camera is shown in Figure 5, the description is shown in Table 5.



Figure 5 The rear interface of the SWIR331 series camera

#### Table 5 The rear interface of the SWIR331 series camera

| Order | Specification         |
|-------|-----------------------|
| 1     | DC 12V power slot     |
| 2     | External IO connecter |
| 3     | CameraLink1           |
| 4     | CameraLink2           |

## 4.4 The packing information



Figure 6 The packing information of the SWIR331 series camera

## Table 6 The packing information of the SWIR331series camera

| Standard Packing information |                                                                                                                                |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Α                            | 3-A equipment case: L:28cm W:23cm H:15.5cm (1pcs, 2.8Kg/ box)                                                                  |  |  |  |
| В                            | SWIR331 Short-Wavelength Infrared Camera                                                                                       |  |  |  |
| С                            | 2 CameraLink cables                                                                                                            |  |  |  |
| D                            | 12V/3A 6 PIN air plug power adapter                                                                                            |  |  |  |
| Е                            | Power cord. National standard, American standard, European standard, British standard power cord (D1, D2, D3, D4) for choosing |  |  |  |
| F                            | One external trigger control cable                                                                                             |  |  |  |
|                              | Optional accessary                                                                                                             |  |  |  |
|                              |                                                                                                                                |  |  |  |
|                              |                                                                                                                                |  |  |  |
|                              |                                                                                                                                |  |  |  |

# 5 External IO connector and electrical characteristics

## 5.1 Pin signal

The SWIR331 series camera External IO connector is shown in Figure 7, the pin signal definitions is shown in Table 7 and Table 8.



Figure 7 The rear interface of the SWIR331 series camera

#### Table 7 The SWIR331 series camera DC12V pin signal definitions

|       | Color  | Pin | Signal | Description of the signal |
|-------|--------|-----|--------|---------------------------|
|       | Red    | 1   | 12V    |                           |
|       | Yellow | 6   | 12V    | 12V power supply positive |
| (2 5) | Black  | 5   | 12V    |                           |
| \\ 3  | White  | 2   | GND    |                           |
|       | Blue   | 3   | GND    | 12V power supply negative |
|       | Green  | 4   | GND    |                           |

Table 8 SWIR331 series camera Trigger pin signal definitions

|    | 2        |
|----|----------|
| 67 | <b>3</b> |
|    | Ľ        |

|               | 颜色    | 管脚 | 信号       | 信号描述说明                              |
|---------------|-------|----|----------|-------------------------------------|
| $\mathcal{N}$ | Blue  | 3  | OPTO_GND | Opto-isolated signal ground         |
|               | Green | 6  | OPTO_IN  | Opto-isolated input signal (line0)  |
| ))            | Pink  | 7  | OPTO_OUT | Opto-isolated output signal (line1) |

## 5.2 I/O electrical characteristics

#### 5.2.1 Opto-isolated input circuit (line0)

In the I/O control of the camera, the opto-isolated input circuit is shown in



Figure 8 Opto-isolated input circuit

Logic 0 input level: 0~2.2VDC (OPTO\_IN pin)

Logic 1 input level: 3.3~24VDC (OPTO\_IN pin)

Maximum input current: 30mA

When the input level is between 2.2V and 3.2V, the circuit operation state is uncertain, please do not let SWIR camera work within this voltage range.



Figure 9 Input logic levels

Input rise delay (TDR): 6us

Input fall delay (TDF): 6us

#### 5.2.2 Opto-isolated output circuit (line1)

In the camera I/O control, the opto-isolated output circuit is shown in Figure 10.



Figure 10 Optocoupler output circuit

The opto-isolated output maximum current is 30mA.



Figure 11 Output logic levels

The electrical characteristics of the opto-isolated output (external voltage 5V, external resistor 1K) are shown in Table 9.

#### Table 9 Opto-isolated output signal's electrical characteristics

| Parameter name    | Parameter notation | Parameter value |
|-------------------|--------------------|-----------------|
| Output logic low  | VL                 | 742mV           |
| Output logic high | VH                 | 4.134V          |
| Output rise time  | TR                 | 4us             |
| Output fall time  | TF                 | 1.8us           |
| Output rise delay | TDR                | 12us            |
| Output fall delay | TDF                | 2us             |

The output of the corresponding output current and VL when using different voltages and resistors in external circuit are shown in Table 10.

Table 10 Opto-isolated output logic's low levels parameters

| External voltage | External resistor | VL    | Output current |
|------------------|-------------------|-------|----------------|
| 3.3V             | 1ΚΩ               | 510mV | 2.82mA         |
| 5V               | 1ΚΩ               | 742mV | 4.31mA         |
| 12V              | 2.4ΚΩ             | 795mV | 4.68mA         |
| 24V              | 4.7ΚΩ             | 850mV | 4.97mA         |

# 6 Connection and Configuration the CameraLink

## 6.1 Connection to the CameraLink

Connect the two CameraLink cables: the CameraLink1 port on the camera is connected to the CL1 port on the capture card, the CameraLink2 port on the camera is connected to the CL2 port on the capture card.

Attention: if the camera and the acquisition card cross-linking, camera will not work. Please pay special attention.

## 6.2 Software installation

#### 6.2.1 Install SDK

Windows 10 system can directly select the exe shown in Figure 12 to install SDK; For Windows 7, please install the driver shown in Figure 13.

| 名称                            | 修改日期            | 类型             | 大小         |
|-------------------------------|-----------------|----------------|------------|
| SaperaLTSDKSetup_8.60.exe     | 2023/4/28 13:49 | 应用程序           | 413,617 KB |
| Xtium2-CL MX4.pdf             | 2023/4/28 13:59 | Microsoft Edge | 4,426 KB   |
| 78 xtium-cl mx4 130000311.exe | 2023/4/28 13:49 | 应用程序           | 43,574 KB  |

| Figure 1 | 2 |
|----------|---|
|----------|---|

| 😮 SaperaLTSDKSetup_8.60.exe    | 2023/4/28 13:49 | 应用程序           | 413,617 KB |
|--------------------------------|-----------------|----------------|------------|
| 🕅 Windows6.1-KB3033929-x64.msu | 2023/8/24 10:37 | Microsoft 更新独  | 44,843 KB  |
| Xtium2-CL MX4.pdf              | 2023/4/28 13:59 | Microsoft Edge | 4,426 KB   |
| 78 xtium-cl_mx4_130000311.exe  | 2023/4/28 13:49 | 应用程序           | 43,574 KB  |
|                                |                 |                |            |

Figure 13

#### 6.2.2 Install options

The following is the interface to be selected, and the rest of the steps can be directly clicked next.



Figure 14



Figure 15

#### 6.2.3 Install the driver

The exe shown in Figure 16 is the driver of the capture card (xtium-cl\_mx4) currently used by our company, and the drivers of dalsa acquisition cards are different.

Capture card driver installation steps can be all click Next.

| Ttium2-CL MX4.pdf             | 2023/4/28 13:59 | Microsoft Edge | 4,426 KB  |
|-------------------------------|-----------------|----------------|-----------|
| 75 xtium-cl_mx4_130000311.exe | 2023/4/28 13:49 | 应用程序           | 43,574 KB |

Figure 16

Restart your computer after the installation is complete.

### 6.3 Configure the Delsa capture card

#### 6.3.1 Serial port configuration

Find the software Sapera Configuration in Figure 17 of the DALSA supporting tool, open it, change COM port mapping (optional) to the required port (currently COM2) as shown in Figure 18, and restart the computer according to the program requirements.



Figure 17

|                             | Index Name                                                                                                                                                                                     | Info                                                                                                                                                           | Tune                                                                                  | Additional Information                                                                                                                                                                   |                                      |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                             | 0 System<br>1 Xtium-CL_N                                                                                                                                                                       | (n/a)<br>(n/a)<br>(x4_1 Seria                                                                                                                                  | l number                                                                              | C0156096                                                                                                                                                                                 |                                      |
|                             | Contiguous Memory                                                                                                                                                                              |                                                                                                                                                                |                                                                                       |                                                                                                                                                                                          |                                      |
|                             | Buffer Allocation (Lega                                                                                                                                                                        | acy) 💌                                                                                                                                                         |                                                                                       |                                                                                                                                                                                          |                                      |
|                             | Buffer Allocation Requ                                                                                                                                                                         | ested (Legacy)                                                                                                                                                 | 3                                                                                     | 🕂 MBytes                                                                                                                                                                                 |                                      |
|                             | Actual Space Allocate                                                                                                                                                                          | đ                                                                                                                                                              | 3                                                                                     | MBytes                                                                                                                                                                                   |                                      |
|                             | CameraLink Serial Port C                                                                                                                                                                       | onfiguration                                                                                                                                                   |                                                                                       |                                                                                                                                                                                          |                                      |
|                             | Physical port name                                                                                                                                                                             |                                                                                                                                                                | Xtium-CL                                                                              | _MX4_1_Serial_0                                                                                                                                                                          | •                                    |
|                             | COM port mapping (o                                                                                                                                                                            | ptional)                                                                                                                                                       | COM2                                                                                  |                                                                                                                                                                                          | •                                    |
|                             | Teledyne DALSA can                                                                                                                                                                             | nera detection                                                                                                                                                 | Automati                                                                              | c Detection                                                                                                                                                                              | •                                    |
|                             | Sapera will try<br>and text-based                                                                                                                                                              | to detect Teledyne<br>I protocols.                                                                                                                             | DALSA cam                                                                             | eras on this COM port using                                                                                                                                                              | both GenCP                           |
|                             |                                                                                                                                                                                                |                                                                                                                                                                | Auto Det                                                                              | ect & Maximize                                                                                                                                                                           | •                                    |
|                             | Baud rate setting                                                                                                                                                                              |                                                                                                                                                                | - Auto Doc                                                                            |                                                                                                                                                                                          |                                      |
|                             | Baud rate setting<br>Sapera will find<br>highest commo                                                                                                                                         | the baud rate that<br>n baud rate suppor                                                                                                                       | the camera i<br>ted by the ca                                                         | s currently set to and then fi<br>amera and the frame grabbe                                                                                                                             | nd the<br>r.                         |
|                             | Baud rate setting<br>Sapera will find<br>highest commo<br>Multi-threaded transfer                                                                                                              | the baud rate that<br>n baud rate suppor<br>callback optimizati                                                                                                | the camera i<br>ted by the ca                                                         | s currently set to and then fi<br>imera and the frame grabbe                                                                                                                             | nd the<br>r.                         |
| Er<br>ca<br>en<br>to<br>are | Baud rate setting<br>Sapera will find<br>highest commo<br>Multi-threaded transfer<br>abling this feature far<br>abled for a fully tested a<br>abled for a fully tested a<br>usally sufficient. | the baud rate that<br>in baud rate suppor<br>callback optimizati<br>nprove transfer call<br>nn) from the same S<br>oplication after othe<br>been implemented i | the camera i<br>ted by the ca<br>on<br>back perform<br>apera applica<br>n the applica | s currently set to and then fi<br>imera and the frame grabbe<br>hance when using multiple<br>ation. However, it should or<br>te improvement methods rela-<br>tion source code, since the | nd the<br>r.<br>hly be<br>ated<br>se |

Figure 18 Serial port configuration dialog box

#### 6.3.2 CameraLink mode configured

Open the software in Figure 19 and verify that it looks like Figure 20. If not, please click the Manual button in Figure 20 to modify the tart as shown in Figure 21, and click the tart Updat button to wait for the completion of the update. If an error occurs, please confirm whether the serial port control is turned off.



| Select '' Manual '' to u                                                                                          | update with a Specific | Configuration        |                     |
|-------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|---------------------|
| Device                                                                                                            | Serial Number          | Configuration        | Status              |
| <tium-cl_m×4_1< td=""><td>C0156096</td><td>1 x Full Camera Link</td><td>Update Not Required</td></tium-cl_m×4_1<> | C0156096               | 1 x Full Camera Link | Update Not Required |
|                                                                                                                   |                        |                      |                     |

Figure 20

| 🛪 Teledyne DALSA    | Device Manager v:3.79.0.0    |                                          | - | $\times$ |
|---------------------|------------------------------|------------------------------------------|---|----------|
| File Tools Help     |                              |                                          |   |          |
| Firmware Update Man | ager                         |                                          |   |          |
| tart Updat Save     | Config file Load Config File | Same Configuration For All Devices       |   | <br>     |
| Device              | Field                        | Value                                    |   |          |
| Xtium-CL_MX4_1      | Serial Number                | C0156096                                 |   |          |
| Update Firmware 🔽   | Device Version               | 0x000000000202001                        |   |          |
| _                   | ACU/DTE + PCIe Interface     | 1.30.00.0311                             |   |          |
|                     | Configuration                | 1 x Full Camera Link                     |   | -        |
| L.                  | Information                  | Support for one Full Camera Link camera. |   |          |
| Firmware State      |                              | Update Not Required                      |   |          |
|                     |                              |                                          |   |          |
| Device Info Fi      | rmware Update                |                                          |   |          |
| Dutput              |                              |                                          |   |          |
| 1                   |                              |                                          |   |          |
|                     |                              |                                          |   | ^        |

Figure 21

#### 6.3.3 Configuring CameraLink Receiving

Opening the Sapera CamExpert software of DALSA, click the arrow position in Figure 22 and select SWIR331KMA\_CL\_Medium\_12bit\_4Ports\_640x512\_V1.0.ccf to load the configuration information of the receiving format of CameraLink.

| രം പലം വ               |                          |                     |  |  |  |
|------------------------|--------------------------|---------------------|--|--|--|
|                        |                          |                     |  |  |  |
| DeviseSelector         |                          | ×                   |  |  |  |
|                        |                          |                     |  |  |  |
| Devide: 📑 Xtium-CLJ    | 1X4_1 🍃 CameraLink Fu    | ll Mono 💌           |  |  |  |
|                        |                          |                     |  |  |  |
| Configur Select a came | ra file (Optional)       | -                   |  |  |  |
|                        |                          |                     |  |  |  |
| CameraLink Dete I      | letect Camera            | Settings            |  |  |  |
|                        |                          |                     |  |  |  |
| Detec                  | tion 'Automatic' and bau | idrate ´Auto-Detect |  |  |  |
|                        |                          |                     |  |  |  |
| Parameters             |                          | ×                   |  |  |  |
| Category               | Parameter                | Value               |  |  |  |
| Basic Timing           | Camera Type              | Areascan            |  |  |  |
| Advanced Control       | Color Type               | Monochrome          |  |  |  |
| Pixel Depth 12         |                          |                     |  |  |  |

Figure 22 Load the CameraLink receive format configuration information

The arrangement is shown in Figure 23(You do not need to change the arrangement of the ccf files mentioned above).

| Parameter                 | Value                       |
|---------------------------|-----------------------------|
| Cameralink Configuration  | Medium                      |
| # of Segment per Line (TA | 4                           |
| TAPS Geometry             | Multiple Taps Interleaved   |
| # of Channel              | 1                           |
| Interline Channel Order   | Normal, Channel A - B       |
| Tap/Channel 1 Direction   | Left to Right , Top to Bott |
| Tap/Channel 2 Direction   | Left to Right , Top to Bott |
| Tap/Channel 3 Direction   | Left to Right , Top to Bott |
| Tap/Channel 4 Direction   | Left to Right , Top to Bott |
| Tap 5 Direction           | Left to Right , Top to Bott |
| Tap 6 Direction           | Left to Right , Top to Bott |
| Tap 7 Direction           | Left to Right , Top to Bott |

Figure 23 Arrangement

#### 6.3.4 CameraLink Receiving the configuration content

The image below shows the resolution and bit depth Settings.

|   | Parameter         | Value      |  |  |  |
|---|-------------------|------------|--|--|--|
|   | Camera Type       | Areascan   |  |  |  |
|   | Color Type        | Monochrome |  |  |  |
| 1 | Pixel Depth       | 12         |  |  |  |
|   | Horizontal Activ  | 640        |  |  |  |
|   | Horizontal Offs   | 0          |  |  |  |
|   | Vertical Active ( | 512        |  |  |  |
|   | Vertical Offset ( | 0          |  |  |  |
|   | Pixel Clock Inp   | 85         |  |  |  |
|   | Data Valid        | Disabled   |  |  |  |
|   | Camera Sensor     | Custom     |  |  |  |
|   | PoCL              | Disabled   |  |  |  |
|   | PoCL Status       | Not Active |  |  |  |

Figure 24

The steps of Camera Sensor Geometry Setting are shown in Figure 25 and Figure 26.

| Parameter       | Value      |
|-----------------|------------|
| Camera Type     | Areascan   |
| Color Type      | Monochrome |
| Pixel Depth     | 12         |
| Horizontal Ac   | 640        |
| Horizontal Of   | 0          |
| Vertical Active | 512        |
| Vertical Offse  | 0          |
| Pixel Clock In  | 85         |
| Data Valid      | Disabled   |
| Camera Sens     | Custom     |
| PoCL            | Disabled   |
| PoCL Status     | Not Active |

Figure 25





The Settings are as follows:

. ~

| Parameter                 | Value                       |
|---------------------------|-----------------------------|
| Cameralink Configuration  | Medium                      |
| # of Segment per Line (TA | 4                           |
| TAPS Geometry             | Multiple Taps Interleaved   |
| # of Channel              | 1                           |
| Interline Channel Order   | Normal, Channel A - B       |
| Tap/Channel 1 Direction   | Left to Right , Top to Bott |
| Tap/Channel 2 Direction   | Left to Right , Top to Bott |
| Tap/Channel 3 Direction   | Left to Right , Top to Bott |
| Tap/Channel 4 Direction   | Left to Right , Top to Bott |
| Tap 5 Direction           | Left to Right , Top to Bott |
| Tap 6 Direction           | Left to Right , Top to Bott |
| Tap 7 Direction           | Left to Right , Top to Bott |

Figure 27

## 6.4 Using Genlcam

#### 6.4.1 Communication Settings

Enter the interface shown in Figure 28 and set the content as shown in Figure 29.

| 鑬 CamExpert (version 8.60.00.2120) - [Untitled]               |   |
|---------------------------------------------------------------|---|
| File View Pre-Processing Tools Help                           |   |
|                                                               |   |
| Device Selector                                               | × |
| Device: 🔊 Xtium-CL_MX4_1 🔊 CameraLink Full Mono 🔻             | ] |
| Configur Select a camera file (Optional)                      |   |
| CameraLink Dete Detect Camera Settings                        |   |
| Detection 'Automatic' and baudrate 'Auto-Detect and Maximize' |   |

Figure 28

| Communicati                                                                                                        | on Settings                                                                                                                                                         | × |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| Selected Ser                                                                                                       | ial Port: Xtium-CL_MX4_1_Serial_0                                                                                                                                   |   |  |  |  |
| Protocol Det                                                                                                       | ection                                                                                                                                                              |   |  |  |  |
| Туре:                                                                                                              | Automatic Detection                                                                                                                                                 |   |  |  |  |
| CamExpert tries to detect Teledyne DALSA<br>cameras on this COM port using both GenCP and<br>text-based protocols. |                                                                                                                                                                     |   |  |  |  |
|                                                                                                                    |                                                                                                                                                                     | _ |  |  |  |
| Serial Port Se                                                                                                     | ettings                                                                                                                                                             |   |  |  |  |
| Baud Rate:                                                                                                         | Auto Detect & Maximize                                                                                                                                              |   |  |  |  |
|                                                                                                                    | Will find the baud rate that the camera is currently<br>set to and then will try to find the highest baud<br>rate supported by the camera and the frame<br>grabber. |   |  |  |  |
| Save                                                                                                               | Settings Cancel                                                                                                                                                     | ] |  |  |  |

Figure 29

After the Settings are complete, properly connect the camera and restart CamExpert. Figure 30 will appear on the software interface.



Figure 30

## 6.5 Description of Genlcam

#### 6.5.1 Device Information and control

As shown in Figure 31, it contains the basic information of the equipment, including exposure time control, gain control, frame rate control and TEC temperature display.

| Ca           | tegory                                                                       | Parameter       | Value          |
|--------------|------------------------------------------------------------------------------|-----------------|----------------|
| ⊡            | Board                                                                        | Manufacturer    | touptek hangzh |
|              | Basic Timing<br>Advanced Control<br>External Trigger<br>Image Buffer and ROI | Device Family   | toupswir       |
|              |                                                                              | Model Name      | toupswir331k   |
|              |                                                                              | Serial Number   |                |
|              |                                                                              | expo time       | 100            |
| _            |                                                                              | gain            | Middle Gain    |
| Ξ            | Attached Camera                                                              | Frame Frequence | 700            |
|              | Device Information and                                                       | Deniose mode    | Enable         |
|              | Image Format Controls                                                        | Deniose level   | 5              |
|              | TEC ctrl                                                                     | TEC_temp        | 0.4            |
| Trigger ctrl | Trigger ctrl                                                                 |                 | Show More >>   |

Figure 31

### 6.5.2 Image Format Controls

Figure 32 shows the ROI control.

| Par      | rameters                         |                   | ×            |
|----------|----------------------------------|-------------------|--------------|
| Category |                                  | Parameter         | Value        |
| ⊡        | Board                            | Horizontal Offset | 0            |
|          | Basic Timing<br>Advanced Control | Vertical Offset   | 0            |
|          |                                  | Width             | 640          |
|          |                                  | Height            | 512          |
|          | External Ingger                  |                   | Show More >> |
|          | Image Buffer and ROI             |                   |              |
| ⊡        | Attached Camera - CameraLink_1   |                   |              |
|          | Device Information and control   |                   |              |
|          | Image Format Controls            |                   |              |
|          | TEC ctrl                         |                   |              |
|          | Trigger ctrl                     |                   |              |
|          | <b>D</b> '                       | 22                |              |

#### Figure 32

#### 6.5.3 TEC Ctrl

As shown in Figure 33, TEC Ctrl contains TEC temperature control, TEC switch, fan switch, and TEC temperature display in degrees Celsius.



#### 6.5.4 Trigger ctrl

The trigger control content Settings are shown in Figure 34 and contain the basic trigger Settings.

| Par         | ameters                                         |                |                 | × |
|-------------|-------------------------------------------------|----------------|-----------------|---|
| Ca          | tegory                                          | Parameter      | Value           | ^ |
| ⊡           | Board                                           | Tri mode       | Disable         |   |
|             | Basic Timing                                    | Softalways     | Disable         |   |
|             | Advanced Control                                | TriSource      | Opt_in          |   |
|             |                                                 | TriActivation  | rising edge     |   |
|             | External Irigger                                | Burst Counter  | 0               |   |
| Contract of | Image Buffer and ROI                            | CounterSource  | Opt_in          |   |
|             | Attached Camera                                 | Counter Value  | 0               |   |
|             | Device Information and<br>Image Format Controls | PWMSource      | Opt_in          |   |
|             |                                                 | Soft trigger   | Disable         |   |
|             | TEC ctrl                                        | Tirgger Delay0 | 0               |   |
|             | Trigger ctrl                                    | Tirgger Delays | 0               |   |
|             | nigger en                                       | Output Mode0   | 0               |   |
|             |                                                 | DurationTime   | 0               |   |
|             |                                                 | PreDelay       | 0               |   |
|             |                                                 | OutputDelay    | 0               |   |
|             |                                                 | UserValue      | Opt_in          |   |
|             |                                                 | TriProhibited  | 4100            |   |
|             |                                                 | Counter Reset  | Disable         |   |
|             |                                                 | Debounce0      | 0               |   |
|             |                                                 | Line Inverter  | -Invalid value- |   |
|             |                                                 | OutputCounter  | 1               | ~ |

Figure 34

# 7 Camera Commands

## 7.1 Basic Formats

The serial port of the camera CameraLink is used as the communication port. The baud rate of the serial port is 115200, and the serial port has 8 bits without check bit mode.

The protocol format is compatible with GENICAM gencp 1.0. For details, refer to GENICAM protocol.

The protocol instruction is realized by register access, each function is distinguished and defined by different register addresses, and the protocol data is divided into general part and special part. The protocol data is preceded by the general part and followed by the special part. The general part is fixed to the length of 16 bytes, and the length of the special part is variable according to the different length of the function.

The general 16-byte format is described as follows (all fields in the general part are in Big-Endian format with high bytes before them) :

Suppose the sixteen bytes of data are D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15. For command execution, the protocol stipulates that the host computer is the active initiator and the device is the passive responder.

- 1. D0, D1 is two prefix bytes, fixed as 0x01 and 0x00.
- 2. D2 and D3 are the check words of the universal partial data. The check part ranges from D6, D7 to D14, and D15 adopts double-byte CRC redundancy check, with the high byte coming first (Big-Endian).
- 3. D4 and D5 are the check words for the total protocol data. The check part runs from D6 and D7 to the end of the entire protocol data. Double-byte CRC redundancy check is also adopted, with the high byte in the front (Big-Endian).
- 4. D6 and D7 are channel ids. At present, the device channel is fixed to 0, and the data is 0x00 and 0x00.
- 5. D8 and D9 are common flag fields. For the upper computer, if the value is 0x40, 0x01 indicates that the normal function request is sent and the device needs to respond. If the value is 0x00, 0x01 indicates that the normal function request is sent and the device does not need to respond. For the response of the device, the field is 0x00. 0x00 indicates that the device receives the response correctly and there is no exception.
- 6. D10 and D11 are command ids, which are general command definition fields. For the upper computer, the values are 0x08 and 0x00 when reading data and 0x08 and 0x02 when writing data. For the device, the value is 0x08, 0x01 when it responds to read data, 0x08, 0x03 when it responds to write data.
- 7. D12, D13 indicates the length of the dedicated part data.
- 8. D14 and D15 are sequence ids. For the upper computer, the sequence ID needs to be increased by one for each command sent. The sequence ID remains the same for a device-side response to ensure that the host machine receives confirmation that the device-side instruction is executed correctly.

### 7.2 Dedicated Part Format

For the special part of the format is mainly divided into two read and write registers (register and length field is fixed in the Big-Endian format before the high byte, the rest of the data can be Big-Endian or Little-Endian, according to the custom)

1. Format description of the special part when the upper computer reads the register data

The whole dedicated data length is 12 bytes, if the data is R0, R1, R2, R3, R4, R5, R6, R7, X0, X1, X2, X3, where R0~R7 is the register address that needs to be read; X0, X1 is fixed to 0x00, 0x00; X2, X3 are the length of the data to be read (the length is the legal length defined by the register, and the length of each register is specified).

2. Format description of the special part when the device responds to the upper computer reading register data

The whole private data is the data that needs to be read, there are no other fields; The length varies according to the length of the data read, such as X1, X2, X3..... Xn; The length of the read data is n.

3. Format description of the special part of the upper computer when writing register data

When the upper computer writes register data, the special part of the data consists of two parts: register and data, such as R0, R1, R2, R3, R4, R5, R6, R7, X1, X2, X3..... Xn; R0 to R7 indicates the register address (REG\_ADDR). X1 to Xn indicates the data to be written. The length of the data to be written is n, which is the legal length specified by the register.

4. Format description of the special part when the device responds to the host computer to write register data

When the device successfully writes data from the host computer, the dedicated data part of the device response is fixed as 0x00, 0x00, 0x00, 0x00.

### 7.3 Definition of each register

ADDR\_BASE =0x000000020000000

REG\_ADDR= ADDR\_BASE + ADDR\_OFFSET

| Number | Register function               | Register address<br>(ADDR_OFFSET) | Register value                                                                                          | default<br>parameters | data length | R/W | Data<br>sequence |
|--------|---------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------|-------------|-----|------------------|
| 1      | ROI columns                     | 0x070                             | 32 to 640- Column start<br>position                                                                     | 0                     | 4byte       | RW  | little           |
| 2      | ROI column<br>starting position | 0x080                             | 0~608                                                                                                   | 640                   | 4byte       | RW  | little           |
| 3      | ROI rows                        | 0x090                             | 4 to 512- The starting<br>position of the line                                                          | 0                     | 4byte       | RW  | little           |
| 4      | ROI row starting<br>position    | 0x0A0                             | 0~508                                                                                                   | 512                   | 4byte       | RW  | little           |
| 5      | Exposure                        | 0x200                             | 16~100000(us)                                                                                           | 100                   | 4byte       | RW  | Big              |
| 6      | Gain                            | 0x210                             | 0/1/2(Hg/Mg/Lg)                                                                                         | 1                     | 4byte       | RW  | Big              |
| 7      | Frame rate control              | 0x230                             | 1~700                                                                                                   | 700                   | 4byte       | RW  | Big              |
| 8      | Denoising level                 | 0x280                             | 1~10                                                                                                    | 5                     | 4byte       | RW  | Big              |
| 9      | Algorithm control               | 0x2b0                             | Obit: Delect defective pixel<br>switch<br>1bit: Dark field correction<br>switch<br>2bit: Denoise switch | 7                     | 4byte       | RW  | Big              |
| 10     | Defective pixel<br>reload       | 0x320                             |                                                                                                         |                       | 4byte       | W   | Big              |
| 11     | TEC Temperature<br>Setting      | 0x330                             | T(℃)=data/10,<br>complement-on-two                                                                      | 0                     | 4byte       | RW  | Big              |
| 12     | TEC temperature<br>reading      | 0x340                             | T(℃)=data/10,<br>complement-on-two                                                                      |                       | 4byte       | R   | Big              |
| 13     | TEC switch control              | 0x350                             | 1 is on and 0 is off                                                                                    | 1                     | 4byte       | RW  | Big              |
| 14     | Fan control                     | 0x360                             | 1 is on and 0 is off                                                                                    | 1                     | 4byte       | RW  | Big              |
| 15     | Automatic dark<br>field switch  | 0x370                             | 1 is on and 0 is off                                                                                    | 1                     | 4byte       | RW  | Big              |
| 16     | Manual dark field selection     | 0x380                             | 1~15                                                                                                    | 1                     | 4byte       | RW  | Big              |
| 17     | Auto exposure<br>switch         | 0x390                             | 1 is on and 0 is off(Not<br>supported yet)                                                              | 0                     | 4byte       | RW  | Big              |
| 18     | tri_mode                        | 0x400                             | 0-Normal Mode<br>1-Trigger Mode                                                                         | 0                     | 4byte       | RW  | Big              |
| 19     | soft_always_en                  | 0x410                             | 0-soft disable<br>1-soft always enable                                                                  | 0                     | 4byte       | RW  | Big              |
| 20     | tri_source_i                    | 0x420                             | trigger source:<br>0-Opt_in                                                                             | 0                     | 4byte       | RW  | Big              |

|    |                  |        | 1-GPIO_0                       |      |          |       |          |
|----|------------------|--------|--------------------------------|------|----------|-------|----------|
|    |                  |        | 2-GPIO_1                       |      |          |       |          |
|    |                  |        | 3-counter                      |      |          |       |          |
|    |                  |        | 4-PWM                          |      |          |       |          |
|    |                  |        | 5-software                     |      |          |       |          |
|    |                  |        | 0-rising edge;                 |      |          |       |          |
|    |                  |        | 1-falling edge;                | -    |          |       |          |
| 21 | tri_activation_i | 0x430  | 2-level high:                  | 0    | 4byte    | RW    | Big      |
|    |                  |        | 3-level low                    |      |          |       |          |
|    |                  |        |                                |      |          |       |          |
| 22 | burst_counter_i  | 0x440  | 0-65535                        | 0    | 4byte    | RW    | Big      |
|    |                  |        |                                |      |          |       |          |
| 22 | countor courco i | 0×450  |                                | 0    | Abuto    | D\A/  | Pig      |
| 23 | counter_source_i | 0x450  |                                | 0    | 4byte    | RVV   | ыв       |
|    |                  |        | 2-GPI0_0                       |      |          |       |          |
| 24 | counter_value_i  | 0x460  | Frequency division             | 0    | 4byte    | RW    | Big      |
|    |                  |        | coefficient                    |      | -        |       | _        |
|    |                  |        | 0-Opt_in                       | -    |          |       |          |
| 25 | pwm_source_i     | 0x470  | 1-GPIO_0                       | 0    | 4byte    | RW    | Big      |
|    |                  |        | 2-GPIO_1                       |      |          |       |          |
|    |                  |        | Obit: GPIO_0: 0-input,1-       |      |          |       |          |
| 26 | IO link          | 0x480  | output                         | 0    | 4byte    | RW    | Big      |
| 20 | 10_mm            | 0, 100 | 1bit: GPIO_1: 0-input,1-       | Ũ    | ibyte    |       | 516      |
|    |                  |        | output                         |      |          |       |          |
| 27 | soft_start       | 0x490  | software trigger               | 0    | 4byte    | W     | Big      |
|    |                  |        | when the Opt_in tirgger        |      |          |       |          |
| 20 | tui dalau O i    | 0::1=0 | assert, the start of exposure  | 0    | 4        | D) 4/ | Die      |
| 28 | tri_delay_0_l    | 0x4a0  | will delay                     | 0    | 4byte    | RW    | BIg      |
|    |                  |        | 0-32xffff ffff(cycle)          |      |          |       |          |
|    |                  |        | when the GPIO 0 tirgger        |      |          |       |          |
|    |                  |        | assert, the start of exposure  | _    |          |       |          |
| 29 | tri_delay_1_i    | 0x4b0  | will delay 0-                  | 0    | 4byte    | RW    | Big      |
|    |                  |        | 32xffff ffff(cvcle)            |      |          |       |          |
|    |                  |        | when the GPIO 1 tirgger        |      |          |       |          |
|    |                  |        | assert the start of exposure   |      |          |       |          |
| 30 | tri_delay_2_i    | 0x4c0  | will delay                     | 0    | 4byte    | RW    | Big      |
|    |                  |        | $0_{-32}$ xffff ffff(cycle)    |      |          |       |          |
|    |                  |        | when the software tirgger      |      |          |       |          |
|    |                  |        | assert the start of exposure   |      |          |       |          |
| 31 | tri_delay_s_i    | 0x4d0  | will dolay                     | 0    | 4byte    | RW    | Big      |
|    |                  |        |                                |      |          |       | -        |
|    |                  |        | Ont out output model 0         |      |          |       |          |
|    |                  |        | Controller Mait                |      |          |       |          |
| 22 |                  | 0::1=0 | 1 Fund a surge A active        | 0    | 4        | D) 4/ | Die      |
| 32 | output_mode_0_i  | 0x4e0  | 1-Exposure Active              | 0    | 4byte    | RW    | BIg      |
|    |                  |        | 2-Strobe                       |      |          |       |          |
|    |                  |        | 3-User output                  |      |          |       |          |
|    |                  |        | GPIO_0 Output mode: 0-         |      |          |       |          |
|    |                  |        | Frame Trigger Wait             | _    |          |       |          |
| 33 | output_mode_1_i  | 0x4f0  | 1-Exposure Active              | 0    | 4byte    | RW    | Big      |
|    |                  |        | 2-Strobe                       |      |          |       |          |
|    |                  |        | 3-User output                  |      |          | ļ     |          |
|    |                  |        | GPIO_1 output mode: 0-         |      |          |       |          |
|    |                  |        | Frame Trigger Wait             |      |          |       |          |
| 34 | output_mode_2_i  | 0x500  | 1-Exposure Active              | 0    | 4byte    | RW    | Big      |
|    |                  |        | 2-Strobe                       |      |          |       |          |
|    |                  |        | 3-User output                  |      |          |       |          |
|    |                  |        | Strobe duration                |      |          |       |          |
| 35 | duration_time_i  | 0x510  | time:effective time 0-         | 0    | 4byte    | RW    | Big      |
|    |                  |        | 32xffff_ffff(cycle)            |      |          |       |          |
| 26 | nun dalau i      | 0      | advance the exposure time      | 0    | 4 hunter | DIA   | Die      |
| 36 | pre_delay_l      | UX520  | 0-32xffff_ffff(cycle)          | U    | 4byte    | ĸw    | ыд       |
|    |                  | 0 500  | later than exposure time 0-    | -    |          |       | <u> </u> |
| 37 | output_delay_i   | 0x530  | 32xffff ffff(cvcle)            | 0    | 4byte    | RW    | Big      |
| 38 | user value       | 0x540  | Opt_outuser value              | 0    | 4byte    | RW    | Big      |
|    |                  | 0.5-5  | next trigger rising prohibited |      |          |       |          |
| 39 | tri_pronibited_i | UX550  | time 4100~32xffff_ffff(cycle)  | 4100 | 4byte    | КW    | ыд       |

| 40 | counter_reset                   | 0x560 | When counter_reset assert,<br>the counter of trigger will be<br>reseted   | 0       | 4byte  | w  | Big |
|----|---------------------------------|-------|---------------------------------------------------------------------------|---------|--------|----|-----|
| 41 | debounce_0                      | 0x570 | debounce time: 0-20000us                                                  | 000us 0 |        | RW | Big |
| 42 | debounce_1                      | 0x580 | debounce time: 0-20000us                                                  | 0       | 4byte  | RW | Big |
| 43 | debounce_2                      | 0x590 | debounce time: 0-20000us                                                  | 0       | 4byte  | RW | Big |
| 44 | line_inverter                   | 0x5a0 | 1-enable                                                                  | 3'b111  | 4byte  | RW | Big |
| 45 | output_counter_i                | 0x5b0 |                                                                           | 1       | 4byte  | RW | Big |
| 46 | pause                           | 0x5c0 |                                                                           | 0       | 4byte  | RW | Big |
| 47 | Frame count cleared to zero     | 0x5d0 | Obit: frame_clr<br>1bit: tri_clr<br>2bit: time_clr<br>3bit: all_clr       | 0       | 4byte  | W  | Big |
| 48 | Frame count<br>display switch   | 0x5e0 |                                                                           | 0       | 4byte  | RW | Big |
| 49 | Dark field<br>threshold control | 0x5f0 | 0-16384                                                                   | 16383   | 4byte  | W  | Big |
| 50 | Version                         | 0x3a0 | MCU Version + maximum<br>frame rate + Firmware<br>version + Firmware date |         | 16byte | R  | Big |
| 51 | Read mode<br>switching          | 0x1f0 | 0: IWR(Integrate while<br>reading)<br>1: ITR(Integrate then read)         | 1       | 4byte  | RW | Big |

# 8 SDK & CLView application

## 8.1 SDK

The camera control supports two modes: 1) Controlled through private SDK development kit; 2) Controlled by GenlCam interface.

## 8.2 CLView application



Figure 35 Software interface

CLView software can achieve complete control of the camera, and open source to customers to use, while providing technical support.

Description of the main functions of CLView software:

Serial port control;

Exposure time control;

Gain mode control;

ROI control;

Frame rate control;

Trigger mode control;

Dark field correction control;

TEC and Fan control;

Refrigeration temperature control;

Real-time frame rate display;

Real-time temperature monitoring;

Save picture;

Video;

Update online;

Accept customer OEM functions customized.

## 8.3 CLCtrl software

The camera can capture and display images through the software CameraLink capture card, and use the CLCtrl software to control. Start the CLCtrl software first, and then start the acquisition card software after obtaining the control of the serial port.

| tilk CI Ctrl              |             | -     |  | ×      |  |  |  |  |  |
|---------------------------|-------------|-------|--|--------|--|--|--|--|--|
|                           |             | _     |  | ~      |  |  |  |  |  |
| Acquisition               |             |       |  |        |  |  |  |  |  |
| COM:                      | COM2        |       |  | $\sim$ |  |  |  |  |  |
|                           | Start       |       |  |        |  |  |  |  |  |
| '                         |             |       |  |        |  |  |  |  |  |
| Exposure                  |             |       |  | -      |  |  |  |  |  |
| Auto Exposur              | e           |       |  |        |  |  |  |  |  |
| Exposure Time:            |             |       |  | 0us    |  |  |  |  |  |
|                           |             |       |  |        |  |  |  |  |  |
| Conversion Gain:          |             |       |  |        |  |  |  |  |  |
| Hg                        | Mg          |       |  | Lg     |  |  |  |  |  |
| - <u>6</u>                |             |       |  |        |  |  |  |  |  |
| Trigger                   |             |       |  |        |  |  |  |  |  |
| Trigger                   |             |       |  |        |  |  |  |  |  |
| Trigger Source:           | Opto-isol   | ated  |  | $\sim$ |  |  |  |  |  |
|                           | C . D       |       |  |        |  |  |  |  |  |
|                           | Software In | ngger |  |        |  |  |  |  |  |
| ROI                       |             |       |  | •      |  |  |  |  |  |
| Frame Rate 🗸 👻            |             |       |  |        |  |  |  |  |  |
| Temperature 🗸 🗸           |             |       |  |        |  |  |  |  |  |
| Denoise 🗸 🗸               |             |       |  |        |  |  |  |  |  |
| Sharpen 🔻                 |             |       |  |        |  |  |  |  |  |
| Dark Field Correction 🔹 🔻 |             |       |  |        |  |  |  |  |  |
| Flat Field Correction 🔹 🔻 |             |       |  |        |  |  |  |  |  |
| Flip 🔺                    |             |       |  |        |  |  |  |  |  |
| Horizontal                |             |       |  |        |  |  |  |  |  |
| Vertical                  |             |       |  |        |  |  |  |  |  |
| Update Firmwa             | ire         |       |  | T      |  |  |  |  |  |
| Diagnose 🗸 🗸              |             |       |  |        |  |  |  |  |  |
|                           |             |       |  |        |  |  |  |  |  |
|                           |             |       |  |        |  |  |  |  |  |
|                           |             |       |  |        |  |  |  |  |  |
|                           |             |       |  |        |  |  |  |  |  |
|                           |             |       |  |        |  |  |  |  |  |